
Abstract

Reaction of unsaturated fulvene endoperoxides with dimethyl 1,2,4,5-tetrazine-3,6-dicarboxylate gave saturated fulvene endoperoxides containing the 1,2-dihydropyridazine ring. Treatment of dihydropyridazine endoperoxides with water followed by phenyliodosyl bis(trifluoroacetate) oxidation provided acrylic acid derivatives and dimethyl pyridazine-3,6-dicarboxylate.

J. Heterocyclic Chem., 40, 529 (2003).

Introduction.
Bicyclic endoperoxides obtained by [4+2] cycloaddition of singlet oxygen to various cyclic 1,3-dienes have become increasingly significant in a variety of chemical [1] and biochemical transformations [2]. On the other hand, the low chemical stability of the endoperoxides can be taken advantage of to perform selective transformations giving important compounds. Fulvenes $\mathbf{1}$ have been favorite substrates for singlet oxygenation. Sensitized photooxygenation of 6substituted fulvenes has led to a number of interesting oxygenated derivatives [3]. Unstable fulvene endoperoxides 2 can be conveniently and selectively reduced to their respective stable saturated fulvene endoperoxides [4a]. Erden et al. [3d,4] have shown that functionalized 1,5-dicarbonyl compounds and tetrahydrofurans can be obtained by a relatively simple protocol involving thermolysis of saturated fulvene endoperoxides in the presence of acetic acid. Also, saturated fulvene endoperoxides derived from 6-vinylfulvene proved to be excellent precursors of 5-propylal-substituted 2-cyclopentenones [4].

Recently, we reported [5] the trapping of highly reactive fulvene endoperoxides 2 [4], obtained by photooxygenation of the appropriate fulvenes in the presence of tetraphenyl porphyrine (TPP), with dimethyl 1,2,4,5-tetrazine-3,6-dicarboxylate (5). The treatment of the trapping products 3 with cobalt (II) tetraphenylporphyrine gave alkylidene- and arylidenemalonaldehydes 4 [6]. In this paper, we report a new fragmentation of the fulvene

$$
\begin{aligned}
& \text { a) } \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CH}_{3} \\
& \text { b) } \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{Ph} \\
& \text { c) } \mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{Ph} \\
& \text { d) } \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{Ph} \\
& \text { e) } \mathrm{R}_{1}=\mathrm{R}_{2}=-\left(\mathrm{CH}_{2}\right)_{5}^{-}
\end{aligned}
$$

Scheme 1

endoperoxides 3 with phenyliodosyl bis(trifluoroacetate) (PIFA) [7] to give the correponding acrylic acid derivatives. This methodology may serve as an alternative route for the synthesis of substituted acrylic acid derivatives.

Results and Discussion.

In the course of studying the trapping reactions of the unsaturated fulvene endoperoxides 3 we noticed that water adds to the 1,2-dihydropyridazine ring. Therefore, we investigated the reaction of the trapping products 3a-e with water. Two equivalents of water was added to a cold solution ($-40 \pm 5{ }^{\circ} \mathrm{C}$) of trapping products 3a-e in CHCl_{3}. Compounds 6a-e were formed by 1,2-addition of water as the sole products (Scheme 1). However, in the case of asymmetrical substitution at the fulvene ring, two isomeric addition products of $\mathbf{6 c}$ and $\mathbf{6 d}$ were formed as expected (Scheme 1).

The structures of $\mathbf{6 a - e}$ were assigned by ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}$ NMR. The most conspicuous feature in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of 6a-e was an AB system, which corresponds to vicinal protons in the 1,2-dihydropyridazine ring. The A-part, as well as the B-part of the AB system in 6a resonate as a doublet of doublets at $3.46 \mathrm{ppm}(J=9.3,1.5$ $\mathrm{Hz})$ and $3.06 \mathrm{ppm}(J=9.3,2.5 \mathrm{~Hz})$, respectively. The peroxide-bridgehead protons appear as a singlet at 4.68 ppm and a doublet at $5.08 \mathrm{ppm}(J=1.5 \mathrm{~Hz})$. There was no measurable coupling between protons in the dihydropyridazine ring and the bridgehead protons at 4.68 ppm due to a nearly 90° dihedral angle. Inspection of Drieding models confirmed this angle. On the other hand, the 14 -line ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{6 a}$ supports strongly the proposed asymmetrical structure. The stereochemistry of -OH group was not determined.

Table 1
Acrylic Acids Obtained from some Unsaturated Fulvene Endoperoxides
Endopeoxide
[a] Total crude crystalline yield; [b] Crystalline yield; [c] According to ${ }^{1} \mathrm{H}-\mathrm{NMR}$.

The quantitative addition of water to the six-membered ring at lower temperatures $\left(-40^{\circ} \mathrm{C}\right)$ indicates that the sixmembered ring must be highly strained due to the planarity of ring and annelation of a strained five-membered ring. This ring strain can be partially released by the addition of water to the six-membered ring. Walls et al. have observed similar results. They reported easy addition of methanol to the dihydropyridazine ring [8].
Finally, the bicyclic endoperoxides 6a-e were treated with phenyliodosyl bis(trifluoroacetate) in CHCl_{3} at $-40^{\circ} \mathrm{C}$, that resulted in the formation of the corresponding acrylic acid derivatives 7a-e and diazine $\mathbf{8}$ (Table 1). The structures were confirmed by means of spectroscopic methods. The formation mechanism of the acrylic acid derivatives is unclear. However, we assume that PIFA first attacks alcohol group [9] and causes an oxidative fragmentation of the fulvene endoperoxide ring. Consequently, the iodosobenzene which is probably formed under the given reaction conditions acts as an oxygen-atom transfer agent and causes an oxidative decarboxylation [10] to give the corresponding acrylic acid derivatives 7a-e [11]. The bicyclic endoperoxides $\mathbf{4}$ have been treated directly with PIFA. However, the expected aromatic compound 9 was not formed.
In conclusion, the unexpected reaction of phenyliodosyl bis(trifluoroacetate) with fulvene endoperoxide is demonstrated. The intriguing feature of this reagent is its versatility and broad application to a large number of compounds containing different functional groups. Furthermore, this method may be applied to the synthesis of highly functionalized acrylic acids.

EXPERIMENTAL

General.
Solvents were concentrated at reduced pressure. Melting points were determined on a Thomas-Hoover capillary melting apparatus. Infrared spectra were obtained from solution in 0.1 mm cells or KBr pellets for solids on a Perkin-Elmer 337 infrared recording spectrophotometer. ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectra were recorded on Varian 60 and 200 MHz and ${ }^{13} \mathrm{C} \mathrm{nmr}$ spectra on a 50 MHz spectrometer and are reported in δ units with SiMe_{4} as internal standard.
Photooxygenation of Fulvenes [4].
To a solution of fulvene (1 mmol) in 5 mL of CHCl_{3} was added $5-10 \mathrm{mg}$ of TPP. The resulting mixture was irradiated with a projection lamp (150 W) while dry oxygen was being passed through solution and the mixture was stirred for 1 h at $-50 \pm 5^{\circ} \mathrm{C}$.

Trapping of Fulvene Endoperoxides 2 with Dimethyl 1,2,4,5-tetrazine-3,6-dicarboxylate [6].

To a stirred solution of fulvene endoperoxide 2 (1 mmol) prepared as described above in 5 mL of CHCl_{3} was added 1 mmol of dimethyl $1,2,4,5$-tetrazine-3,6-dicarboxylate [12] at $-50 \pm 5^{\circ} \mathrm{C}$. After complete addition ($1-2 \mathrm{~min}$), the mixture was stirred for 1 day at $-50 \pm 5^{\circ} \mathrm{C}$. The resulting mixture was used to subsequent procedure.

Addition of Water to Trapping Products.
To a stirred solution of the trapping product (1 mmol) prepared as described above in 5 mL of CHCl_{3} cooled to $-40 \pm 5^{\circ} \mathrm{C}$ was added 1 mmol of water during 1 min . After stirring for 1 day at $-40 \pm 5^{\circ} \mathrm{C}$, the solution was slowly warmed to room temperature. The solvent was removed under reduced pressure. The water addition products were obtained in quantitative yield and the crude product was recrystallized from an appropriate solvent.

Dimethyl 6-Hydroxy-11-(1-methylethylidene)-9,10-dioxa-4,5diazatricyclo[6.2.1.0 ${ }^{2,7}$]undec-5-ene-3,6-dicarboxylate (6a).

The compound was obtained as white crystals from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ether (80%), mp 110-112${ }^{\circ}$; ir (potassium bromide): OH 3361, CO 1753, $1727 \mathrm{~cm}^{-1} .^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 6.98$ (d, J = $2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$), $5.08(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1), 4.68(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H} 8), 4.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 3.46 (dd, A-part of AB system, J = 9.3, $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2$), 3.06 (dd, B-part of AB system, $\mathrm{J}=9.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 7), 1.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.63 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): δ 171.5, 166.1, $140.9,136.3,128.9,80.5,79.6,77.3,55.4,54.6,51.9,42.3,24.0$, 23.8 .

Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{7}$: C, $51.53 ; \mathrm{H}, 5.56 ; \mathrm{N}, 8.59$. Found: C, 51.17; H, 5.48; N, 8.78.

Dimethyl 6-Hydroxy-11-(diphenylmethylene)-9,10-dioxa-4,5-diazatricyclo- [6.2.1.0 ${ }^{2,7}$]undec-5-ene-3,6-dicarboxylate ($\mathbf{6 b}$).

The compound was obtained as white crystals from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ether (73%), mp 133-135 ${ }^{\circ}$; ir (potassium bromide): OH 3390, CO 1759, $1738 \mathrm{~cm}^{-1} .^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 7.35-$ $7.17(\mathrm{~m}, 10 \mathrm{H}$, phenyl), $7.07(\mathrm{~d}, \mathrm{~J}=2,5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.05(\mathrm{~d}$, $\mathrm{J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1), 4.85(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H} 8), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.68$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.58 (dd, A-part of AB system, $\mathrm{J}=9.5,1.7 \mathrm{~Hz}$, 1H, H2), 3.23 (dd, B-part of AB system, J $=9.5 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 1 \mathrm{H}$, H 7); ${ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): $\delta 171.4,165.8,142.0,141.8$, 141.0, 140.7, 138.3, 131.2, 130.9, 130.5, 130.2, 130.1, 129.9, 82.0, 79.4, 78.6, 55.2, 54.4, 52.3, 42.4 .

Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{7}$: C, 63.99; H, 4.92; N, 6.22; Found: C, 64.32; H, 5.08; N, 6.34.

Dimethyl 6-Hydroxy-11-[(E) and (Z)-1-Phenylethylidene]-9,10-dioxa-4,5-diaza- tricyclo[6.2.1.0 ${ }^{2,7}$]undec-5-ene-3,6-dicarboxylate ($\mathbf{6 c}$ and $\mathbf{6 c}$).

The mixture was not stable toward column material. Yield 68%, white powder from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ether. ${ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform) of the mixture; $\delta 7.31-7.03(\mathrm{~m}, 12 \mathrm{H}, 2$ phenyl and 2 NH$)$, 5.27 (d, J = $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.84 (bs, 2H), 4.61 (s, 1H), 3.94, ($\mathrm{s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.59\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{xOCH}_{3}\right), 3.56(\mathrm{dd}, \mathrm{J}=$ 9.3, 1.5 Hz, 2H, H2), 3.15-3.05 (m, 2H, H7), 2.05 (s, 3H, CH ${ }_{3}$), 2.03 (s, 3H, CH_{3}); ${ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): $\delta 171.6,171.2$, 166.1, 165.6, 143.1, 143.0, 141.1, 140.6, 139.0 (2C), 133.3, 133.2, 130.2, 130.1 (2C), 129.5, 129.3, 129.2, 81.71, 80.7, 79.7, 79.3, 78.4, 77.6, 55.5, 55.1, 54.6, 54.2, 52.2, 51.8, 42.4, 42.3, 24.0, 23.6.

Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{7}$ (mixture): C, $59.31 ; \mathrm{H}, 4.99$; N , 7.01; Found: C, 58.76; H, 5.19; N, 7.21.

Dimethyl 6-Hydroxy-11-[(E) and (Z)-1-Phenylmethylidene]-9,10-dioxa-4,5-diaza- tricyclo[6.2.1.0 ${ }^{2,7}$]undec-5-ene-3,6-dicarboxylate ($\mathbf{6 d}$ and $\mathbf{6 d}$ ').

The ${ }^{1} \mathrm{H}$ NMR spectrum showed that the reaction mixture consisted of a mixture of $\mathbf{6 d} / \mathbf{d}^{\prime}$ (1:1). Reaction mixture was
unstable toward column materials. Yield 68%; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform) of the mixture: $\delta 7.32-7.09(\mathrm{~m}, 12 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}$, $=\mathrm{CH}), 6.56(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 5.48(\mathrm{bs}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~s}$, $1 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.82$ (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.7-3.6$ (m, $2 \mathrm{H}, \mathrm{H} 2$), 3.213.11 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H} 7$). ${ }^{13} \mathrm{C} \mathrm{nmr}$ of the mixture (deuteriochloroform) δ $171.4,171.3,166.1,166.0,142.5,141.8,141.3,139.9,137.3$, $137.2,130.5,130.4,130.1,130.0,124.7,124.5,84.4,81.0,79.7$, 79.6, 79.4, 76.9, 55.4, 55.3, 54.6, 54.4, 52.4, 51.3, 42.7, 42.5.

Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{7}$ (mixture); C, $57.75 ; \mathrm{H}, 4.85$; N, 7.48; Found: C, 58.81; H, 5.04; N, 7.31.

Dimethyl 6-Hydroxy-11-cyclohexylidene-9,10-dioxa-4,5-diazatricyclo[6.2.1.0 ${ }^{2,7}$]- undec-5-ene-3,6-dicarboxylate ($\mathbf{6 e}$).

Yield 81%, white crystals from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ether, $\mathrm{mp} 90-91{ }^{\circ} \mathrm{C}$; ir (potassium bromide): OH 3420, CO 1760, $1740 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 7.04$ (bd, J = $2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.12$ (d, J $=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1), 4.69(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 8), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.81(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.43 (dd, A-part of AB system, J = $9.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}$, H2), 3.05 (dd, B-part of AB system J =9.3, $2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 7$), 2.07$2.01\left(\mathrm{~m}, 4 \mathrm{H},=\mathrm{C}\left(\mathrm{CH}_{2}\right)\right)$, 1.57-1.34 (m, 6H $\left.\left(\mathrm{CH}_{2}\right)_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): $\delta 171.6,166.1,140.4,136.0,133.1,80.1$, $79.5,76.7,55.3,54.5,51.6,42.2,35.0$ (2C), 29.0, 28.5, 28.0;
Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{7} ; \mathrm{C}, 55.73 ; \mathrm{H}, 6.05 ; \mathrm{N}, 7.65$; Found: C, 55.45; H, 6.00; N, 7.89.

Oxidation of Addition Products 6a-e with Phenyliodosyl Bis(trifluoroacetate).
To a solution of $\mathbf{6 a - e}(1 \mathrm{mmol})$ in 10 mL of CHCl_{3}, prepared as described above was added phenyliodosyl bis(trifluoroacetate) (Merck) (1 mmol) at $-40 \pm 5^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 1-2 min . The reaction mixture was allowed to warm-up slowly to room temperature. The solvent was removed under reduced pressure and 50 mL of ether was added. Addition of ether precipitated the diazine 8 as yellow crystals ($70-80 \%$). Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ether of residue gave pure diazine 8. The organic layer was washed with $\mathrm{NaOH}(1 \mathrm{~N}, 2 \times 25 \mathrm{~mL})$. The aqueous layer was acidified to pH 1 with concentrated hydrochloric acid and extracted with ether ($2 \times 50 \mathrm{~mL}$). The ether extract was dried $\left(\mathrm{CaCl}_{2}\right)$ and evaporated at reduced pressure. The crude product was the corresponding acrylic acid derivatives 7a-e.

Dimethyl Pyridazine-3,6-dicarboxylate (8) [13].
This compound has $\mathrm{mp} 195-196^{\circ}$; ir (potassium bromide): CO $1770,1746 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 8.31$ (s, 2H, aromatic), $4.06\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right): \delta 165.9,154.7$, 130.23, 55.5.

3-Methylbut-2-enoic Acid (7a) [14].
The crude product ($155 \mathrm{mg}, 82 \%$) was crystallized from $\mathrm{CCl}_{4} /$ hexane, $108 \mathrm{mg}(57 \%)$; mp $63-65{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 10.18$ (bs, $1 \mathrm{H}, \mathrm{COOH}$), 5.69 (h, J = $1.2 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}$), 2.17 (d, J =1.2 Hz, 3H, CH3), 1.93 (d, J = $1.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ nmr (deuteriochloroform): $\delta 174.2,162.0,117,6,29.6,22.5$.

3,3-Diphenylacrylic Acid (7b).

The crude product ($150 \mathrm{mg}, 67 \%$) was crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane, mp 150-152 (mp [11c], $158-160^{\circ}$); ${ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 7.39-7.19$ (m, 10H, phenyl), 6.33 (s, $1 \mathrm{H},=\mathrm{CH}$); ${ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): $\delta 172.4,160.8$, $142.8,140.4,131.7,131.2,130.5,130.4$ (2C), 129.9, 118.4.
(E)- and (Z)-3-Phenylbut-2-enoic Acids ($7 \mathbf{c}$ and $7 \mathbf{c}^{\prime}$).
These compounds were obtained in a combined yield of 78% [11a, 15] (207 mg). Integration of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of the isomers mixture showed that E - and Z-isomers were present in the ratio 30:70. 7c: ${ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): δ 8.5-9.0 (br. s. 1 H , $\mathrm{COOH}), 7.6-7.2(\mathrm{~m}, 5 \mathrm{H}$, aromatic), $5.95(\mathrm{q}, \mathrm{J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}$, $=\mathrm{CH}$), $2.2\left(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .7 \mathrm{c}^{\prime}:{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 8.5-9.0$ (br. s. $1 \mathrm{H}, \mathrm{COOH}$), $7.5-7.2$ (m, 5 H , phenyl), 6.2 (q, J= $1.5 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 2.62\left(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
(E) - and (Z)-3-Phenylpropenoic Acids ($7 \mathbf{d}$ and $7 \mathbf{d}^{\prime}$).
These compounds were obtained in a combined yield of 51% [11a]: (117 mg). Integration of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of the isomers mixture showed that E - and Z-isomers were present in a ratio of 53:47. 7d: ${ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 10.0$ (bs, $1 \mathrm{H}, \mathrm{COOH}$), 7.80 (d, A-part of AB system, J = $16.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3$) 7.30-764 (m, 5 H , phenyl), 6.46 (d , B-part of AB system, $\mathrm{J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2$). 7d': ${ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 10.0$ (bs, $\left.1 \mathrm{H}, \mathrm{COOH}\right), 7.30-7.64$ ($\mathrm{m}, 5 \mathrm{H}$, phenyl), 7.09 (d, A-part of AB sysyem, $\mathrm{J}=12.8 \mathrm{~Hz}, 1 \mathrm{H}$, H3) 6.00 (d, B-part of AB system, J = $12.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2$).

2-Cyclohexylideneacetic Acid (7e).

This compound was obtained in 58% yield (81 mg), and was crystallized from ether/hexane, $64 \mathrm{mg}(46 \%)$; mp $89-90^{\circ}$, (mp [11c], $90-91.5^{\circ}$); ${ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 10.71$ (bs, 1 H , $\mathrm{COOH}), 5.62(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 2.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.24(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), $1.62\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform): δ $174.5,168.8,114.5,40.2,32.1,30.6,29.8,28.2$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 3029, 2953, 2876, 1702, 1651, 1446, 1421, 1319, 1293, 1268, 1242, 1217, 1191, 1012, 961, 859.

Acknowledgment.

The authors are indebted to the Department of Chemistry (Atatürk University) and Turkish Academy of Sciences (TUBA) and for financial support of this work.

REFERENCES AND NOTES

[1a] M. Balci, Chem. Rev., 81, 91 (1981); [b] K. J. McCullough and M. Nojima, Curr. Org. Chem., 5, 601 (2001).
[2] N. I. Krinsky, in Singlet Oxygen, H. H. Wassermann and R. W. Murray, ed., Academic Press: New York, 1975, pp. 597-636.
[3a] W. Skorianetz, K. H. Schulte-Elte and G. Ohloff, Helv. Chim. Acta, 54, 1913 (1971); [b] W. Skorianetz, K. H. Schulte-Elte and G. Ohloff, Angew. Chem., 84, 3111 (1972); [c] N. Harada, H. Uda, H. Ueno and S. Utsumi, Chem. Lett., 1173 (1973); [d] I. Erden, F. P. Xu, J. Drummond and R. Alstad, J. Org. Chem., 58, 3611 (1993); [e] I. Erden, J. Drummond, R. Alstad and F. P. Xu, Tetrahedron Lett., 34, 2291 (1993).
[4] For the synthesis and reactions of fulvene endoperoxides see: [a] W. Adam and I. Erden, Angew. Chem. Int. Ed. Engl., 28, 210 (1978);
[b] I. Erden and A.M. Amputchs, Tetrahedron Lett., 28, 3779 (1987); [c] I. Erden, J. Drummond, R. Alstad and F. Xu, Tetrahedron Lett., 34, 1255 (1993).
[5] M. Balci, N. Saraçoğlu and A, Menzek, Tetrahedron Lett., 37, 921 (1996).
[6] G. Özer, N. Saraçoğlu and M. Balci, Heterocycles, 53, 761 (2000).
[7a] Y. Tamura, T. Yakura, H. Tohma, K. Kihuchi and Y. Kita, Synthesis, 126 (1989); [b] A.Varvoglis, Tetrahedron, 53, 1179 (1997).
[8] W. Friedrichsen and H. V. Walls, Tetrahedron, 34, 2509 (1978).
[9] For the reaction of tert. alcohols with PIFA see: M. Kirihara, S. Yokoyama, H. Kakuda and T. Momese, Tetrahedron Lett., 36, 6907 (1995).
[10] Z. Wei-Shan, B. Jiang and X. F. Pan, J. Chem. Soc., Chem. Commun., 2105 (1995).
[11] For synthesis of acrylic acids see: [a] J. R. Johnson, Org. React., 1, 210 (1942); [b] G. Jones, Org. React., 15, 203 (1967); [c] D. R. Brittelli, J. Org. Chem., 46, 2514 (1981).
[12] D. L. Boger, R. S. Coleman, J. S. Panek, F. X. Huber and J. Sauer, J. Org. Chem., 50, 5377 (1985).
[13a] S. Sueur, M. Lagrenee, F. Abraham and C. Bremard, J. Heterocyclic Chem., 24, 1285 (1987); [b] J. Sauer, A. Mielert, D. Lang and D. Peter, Chem. Ber., 98, 1435 (1965).
[14a] H. Bretschneider and H. Haas, Monatsh. Chem., 81, 945 (1950); [b] G. F. Caplus J. L. O'Brien, J. Am. Chem. Soc., 71, 2933 (1949).
[15] M. Julia and J. M. Surzur, Bull Soc. Chim. France, 1626, (1956).

